數(shù)學知識:三角函數(shù)倍角公式證明方法
最近越來越多的小伙伴對于三角函數(shù)倍角公式證明方法這方面的問題開始感興趣,因為大家現(xiàn)在都是想要了解到此類的信息,那么既然現(xiàn)在大家都想要知道三角函數(shù)倍角公式證明方法,小編今天就來給大家針對這樣的問題做個科普介紹吧。
倍角公式是三角函數(shù)中非常實用的一類公式。就是把二倍角的三角函數(shù)用本角的三角函數(shù)表示出來。接下來分享三角函數(shù)倍角公式及證明方法。
Sin2A=2SinA·CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=2tanA/1-tanA^2
三角函數(shù)倍角公式證明方法sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA
cos2A=cos(A+A)=cosAcosA-sinAsinA=(cosA)^2-(sinA)^2=2(cosA)^2-1=1-2(sinA)^2
tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-(tanA)^2]
三角函數(shù)半角公式sin(A/2)=±√((1-cosA)/2)
cos(A/2)=±√((1+cosA)/2)
tan(A/2)=±√((1-cosA)/((1+cosA))
三角函數(shù)積化和差公式sinAsinB=-[cos(A+B)-cos(A-B)]/2
cosAcosB=[cos(A+B)+cos(A-B)]/2
sinAcosB=[sin(A+B)+sin(A-B)]/2
cosAsinB=[sin(A+B)-sin(A-B)]/2
三角函數(shù)和差化積公式sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]
sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]
cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]
cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)