數(shù)學(xué)知識(shí):八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納
最近越來(lái)越多的小伙伴對(duì)于八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納這方面的問(wèn)題開(kāi)始感興趣,因?yàn)榇蠹椰F(xiàn)在都是想要了解到此類(lèi)的信息,那么既然現(xiàn)在大家都想要知道八年級(jí)數(shù)學(xué)知識(shí)點(diǎn)總結(jié)歸納,小編今天就來(lái)給大家針對(duì)這樣的問(wèn)題做個(gè)科普介紹吧。
數(shù)學(xué)是初中很重要的一門(mén)學(xué)科,下面是八年級(jí)數(shù)學(xué)重點(diǎn)知識(shí)點(diǎn)的總結(jié)歸納,希望對(duì)同學(xué)們有幫助。
1、確定位置
在平面內(nèi),確定一個(gè)物體的位置一般需要兩個(gè)數(shù)據(jù)。
2、平面直角坐標(biāo)系
①含義:在平面內(nèi),兩條互相垂直且有公共原點(diǎn)的數(shù)軸組成平面直角坐標(biāo)系。
②通常地,兩條數(shù)軸分別置于水平位置與豎直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做x軸或者橫軸,豎直的數(shù)軸叫y軸和縱軸,二者統(tǒng)稱(chēng)為坐標(biāo)軸,它們的公共原點(diǎn)o被稱(chēng)為直角坐標(biāo)系的原點(diǎn)。
③建立了平面直角坐標(biāo)系,平面內(nèi)的點(diǎn)就可以用一組有序?qū)崝?shù)對(duì)來(lái)表示。
④在平面直角坐標(biāo)系中,兩條坐標(biāo)軸將坐標(biāo)平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆時(shí)針?lè)较蚪凶龅诙笙?,第三象限,第四象限,坐?biāo)軸上的點(diǎn)不在任何一個(gè)象限。
⑤在直角坐標(biāo)系中,對(duì)于平面上任意一點(diǎn),都有唯一的一個(gè)有序?qū)崝?shù)對(duì)(即點(diǎn)的坐標(biāo))與它對(duì)應(yīng);反過(guò)來(lái),對(duì)于任意一個(gè)有序?qū)崝?shù)對(duì),都有平面上唯一的一點(diǎn)與它對(duì)應(yīng)。
3、軸對(duì)稱(chēng)與坐標(biāo)變化
關(guān)于x軸對(duì)稱(chēng)的兩個(gè)點(diǎn)的坐標(biāo),橫坐標(biāo)相同,縱坐標(biāo)互為相反數(shù);關(guān)于y軸對(duì)稱(chēng)的兩個(gè)點(diǎn)的坐標(biāo),縱坐標(biāo)相同,橫坐標(biāo)互為相反數(shù)。
四邊形1、平行四邊形定義:有兩組對(duì)邊分別平行的四邊形叫做平行四邊形。
2、平行四邊形的性質(zhì):平行四邊形的對(duì)邊相等;平行四邊形的對(duì)角相等;平行四邊形的對(duì)角線互相平分。
3、平行四邊形的判定:兩組對(duì)邊分別相等的四邊形是平行四邊形;對(duì)角線互相平分的四邊形是平行四邊形; 兩組對(duì)角分別相等的四邊形是平行四邊形;一組對(duì)邊平行且相等的四邊形是平行四邊形。
4、三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。
5、直角三角形斜邊上的中線等于斜邊的一半。
6、矩形的定義:有一個(gè)角是直角的平行四邊形。
7.矩形的性質(zhì):矩形的四個(gè)角都是直角;矩形的對(duì)角線平分且相等。AC=BD
8、矩形判定定理:有一個(gè)角是直角的平行四邊形叫做矩形;對(duì)角線相等的平行四邊形是矩形;有三個(gè)角是直角的四邊形是矩形。
9、菱形的定義 :鄰邊相等的平行四邊形。
10、菱形的性質(zhì):菱形的四條邊都相等;菱形的兩條對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角。
11、菱形的判定定理:一組鄰邊相等的平行四邊形是菱形;對(duì)角線互相垂直的平行四邊形是菱形;四條邊相等的四邊形是菱形。
S菱形=1/2×ab(a、b為兩條對(duì)角線)
12、正方形定義:一個(gè)角是直角的菱形或鄰邊相等的矩形。
13、正方形的性質(zhì):四條邊都相等,四個(gè)角都是直角。 正方形既是矩形,又是菱形。
14、正方形判定定理:1.鄰邊相等的矩形是正方形。2.有一個(gè)角是直角的菱形是正方形。
15、梯形的定義: 一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形叫做梯形。
16、直角梯形的定義:有一個(gè)角是直角的梯形
17、等腰梯形的定義:兩腰相等的梯形。
18、等腰梯形的性質(zhì):等腰梯形同一底邊上的兩個(gè)角相等;等腰梯形的兩條對(duì)角線相等。
19、等腰梯形判定定理:同一底上兩個(gè)角相等的梯形是等腰梯形。
一次函數(shù)1、函數(shù)
①一般地,如果在一個(gè)變化過(guò)程中有兩個(gè)變量x和y,并且對(duì)于變量x的每一個(gè)值,變量y都有唯一的值與它對(duì)應(yīng),那么我們稱(chēng)y是x的函數(shù)其中x是自變量。
②表示函數(shù)的方法一般有:列表法、關(guān)系式法和圖象法。
③對(duì)于自變量在可取值范圍內(nèi)的一個(gè)確定的值a,函數(shù)有唯一確定的對(duì)應(yīng)值,這個(gè)對(duì)應(yīng)值稱(chēng)為當(dāng)自變量等于a的函數(shù)值。
2、一次函數(shù)與正比例函數(shù)
若兩個(gè)變量x,y間的對(duì)應(yīng)關(guān)系可以表示成y=kx+b(k、b為常數(shù),k≠0)的形式,則稱(chēng)y是x的一次函數(shù),特別的,當(dāng)b=0時(shí),稱(chēng)y是x的正比例函數(shù)。
3、一次函數(shù)的圖像
①正比例函數(shù)y=kx的圖像是一條經(jīng)過(guò)原點(diǎn)(0,0)的直線。因此,畫(huà)正比例函數(shù)圖像是,只要再確定一點(diǎn),過(guò)這個(gè)點(diǎn)與原點(diǎn)畫(huà)直線就可以了。
②在正比例函數(shù)y=kx中,當(dāng)k>0時(shí),y的值隨著x值的增大而減小;當(dāng)k<0時(shí),y的值隨著x的值增大而減小。
③一次函數(shù)y=kx+b的圖像是一條直線,因此畫(huà)一次函數(shù)圖像時(shí),只要確定兩個(gè)點(diǎn),再過(guò)這兩點(diǎn)畫(huà)直線就可以了。一次函數(shù)y=kx+b的圖像也稱(chēng)為直線y=kx+b。
④一次函數(shù)y=kx+b的圖像經(jīng)過(guò)點(diǎn)(0,b)。當(dāng)k>0時(shí),y的值隨著x值的增大而增大;當(dāng)k<0時(shí),y的值隨著x值的增大而減小。
4、一次函數(shù)的應(yīng)用
一般地,當(dāng)一次函數(shù)y=kx+b的函數(shù)值為0時(shí),相應(yīng)的自變量的值就是方程kx+b=0的解,從圖像上看,一次函數(shù)y=kx+b的圖像與x軸交點(diǎn)的橫坐標(biāo)就是方程kx+b=0。